System-Level Fault Diagnosis with Dynamic Mesh Optimization
نویسندگان
چکیده
The efficient identification of hardware and software faults in parallel and distributed systems still remains a challenge in today's most prolific decentralized environments. System-level fault diagnosis is concerned with the detection of all faulty nodes in a set of hundreds (or even thousands) of interconnected units. This is accomplished by thoroughly examining the collection of outcomes of all tests carried out by the nodes under a particular test model. Such task has non-polynomial complexity and can be posed as a combinatorial optimization problem. In this paper we employ Dynamic Mesh Optimization (DMO) to detect faulty units in diagnosable systems. The proposed method encodes the potential solutions as binary vectors and exploits problem-specific knowledge to cope with infeasible individuals. The empirical analysis confirms that the DMO-based scheme outperforms existing techniques in terms of convergence speed and memory requirements, thus becoming a viable approach for real-time fault diagnosis in large-size systems.
منابع مشابه
Optimal Current Meter Placement for Accurate Fault Location Purpose using Dynamic Time Warping
This paper presents a fault location technique for transmission lines with minimum current measurement. This algorithm investigates proper current ratios for fault location problem based on thevenin theory in faulty power networks and calculation of short circuit currents in each branch. These current ratios are extracted regarding lowest sensitivity on thevenin impedance variations of the netw...
متن کاملOptimization of Dynamic Reactive Power Sources Using Mesh Adaptive Direct Search
Dynamic reactive power sources can be used to effectively mitigate the fault-induced delayed voltage recovery (FIDVR) and transient voltage instability issues. When many var sources need to be installed at planned locations, optimization of their sizes is a complicated nonlinear optimization problem due to its non-convexity and the dependence of the constraint on time-series trajectories of pos...
متن کاملModel-based Approach for Multi-sensor Fault Identification in Power Plant Gas Turbines
In this paper, the multi-sensor fault diagnosis in the exhaust temperature sensors of a V94.2 heavy duty gas turbine is presented. A Laguerre network-based fuzzy modeling approach is presented to predict the output temperature of the gas turbine for sensor fault diagnosis. Due to the nonlinear dynamics of the gas turbine, in these models the Laguerre filter parts are related to the linear d...
متن کاملCOMPOSITION OF ISOGEOMETRIC ANALYSIS WITH LEVEL SET METHOD FOR STRUCTURAL TOPOLOGY OPTIMIZATION
In the present paper, an approach is proposed for structural topology optimization based on combination of Radial Basis Function (RBF) Level Set Method (LSM) with Isogeometric Analysis (IGA). The corresponding combined algorithm is detailed. First, in this approach, the discrete problem is formulated in Isogeometric Analysis framework. The objective function based on compliance of particular lo...
متن کاملOn infinite horizon active fault diagnosis for a class of non-linear non-Gaussian systems
The paper considers the problem of active fault diagnosis for discrete-time stochastic systems over an infinite time horizon. It is assumed that the switching between a fault-free and finitely many faulty conditions can be modelled by a finite-state Markov chain and the continuous dynamics of the observed system can be described for the fault-free and each faulty condition by non-linear non-Gau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computación y Sistemas
دوره 16 شماره
صفحات -
تاریخ انتشار 2012